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ABSTRACT 

Let p be a prime and let Q(p) denote the maximal p-extension of Q. We 

prove that for every prime p, the free pro-p group on countably many 

generators is realizable as a regular extension of Q(p)(t). As a consequence, 

if Qn~l denotes the maximal nilpotent extension of Q, then every finite 

nilpotent group is realizable as a regular extension of Qnit (t). 

1. In troduct ion  

Let k be a field, G a profinite group. We say that  G is regular over k if there 

exists a Galois extension K of the rational function field k( t )  which is regular over 

k such that  G ( K / k ( t ) )  -~ G. Let Qnil denote the maximal nilpotent extension 
of the rationals Q, and let Q(p) denote the maximal p-extension of Q. We prove 
that  for every prime p, the free pro-p group on countably many generators is 

regular over Q(p). This in particular implies that every finite nilpotent group 

is regular over Qnil- This result is an improvement on a previous result of the 

author [4] that the free pro-p group on countably many generators is regular 

over the maximal p-extension Q(#p)(p) of Q(#p), the field of pth roots of unity, 

and that  every finite nilpotent group is regular over Qab~it, where Qabnil denotes 

the maximal nilpotent extension of the maximal abelian extension of Q. The 

proof is an adaptation of [4, Theorem 3.4], using classical methods of Scholz and 

Reichardt. 
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2. E m b e d d i n g  p r o b l e m s  

We recall the notation and terminology of embedding problems. Let K be any 

field. An e m b e d d i n g  p r o b l e m  E over K is given by a short exact sequence of 

finite groups 

1--+ A--+ E - + e G - +  I 

with G = G ( L / K )  a Galois group. We will assume A abelian. The embedding 

problem is called cen t r a l  if A maps into the center of E. A (weak) so lu t ion  

is a continuous homomorphism f :  GK ---+ E such that e �9 f = res, where res 

denotes the restriction map from GK to G. (GK = G ( K s / K ) ,  where K,  denotes 

the separable closure of K.)  If the group extension e: E -+ G happens to split, 

then there is the trivial solution s �9 res, where s: G -+ E is a section. If f is 

surjective, f is called a p r o p e r  solution, and the fixed field of the kernel of f is 

a so lu t i on  field N with G ( N / K )  ~- E. It is known [1, Prop. 24.49] that if K is 

hilbertian (and A is abelian), then every embedding problem that has a solution 

has a proper solution. 

Let p be a prime number and let K be a field of characteristic different from 

p, K1 = K(#p) ,  where #p denotes the group of pth roots of unity. Let T = 

G ( K 1 / K )  -- (7>, where T acts on a primitive pth root of unity ~ by raising 

to the power g. By Kummer Theory we have a canonical T-isomorphism 

between the Galois group of the maximal elementary abelian p-extension of K1 

and H o m ( K ~ / K 1  p, #p); in particular, if a E K~', then Kl (a  1/p) is abelian over K 

a r -g  E K i  p. We will need a lemma, which we put in a slightly more general 

setting, and which will be useful in comparing embedding problems over K with 

the corresponding embedding problems over K1. 

Let p be a prime, T = <T) be a cyclic group of order dividing p - 1. Let V 

be a ZT-module whose p-torsion subgroup Vp m {v E V : pv = 0} is of order 1 

or p. Let x be a generator of Vp. Then ~-(x) = gx for some positive integer g, 

so x is killed by T - - g .  I f m i s  the order o f T ,  thengm_-- 1 m o d p .  We may 

assume gm ~ 1 mod p2, since otherwise we may replace g by g +p.  Let E denote 

the element T 'n-1 + Tm--2g + . . .  + g i n - 1  of ZT. Then E(T -- g) = (T -- g)E = 

T in_g in  = 1 - g i n - -  0 m o d p a n d  ~ 0 m o d p 2 .  Set V := V / p V , ~ , ~ t h e  

corresponding elements in FpT. (V is an FpT-module.) 

2.1 LEMMA (see [3, p. 123]): Let V be as above. Then the sequence 

is exact. 
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Proof" From the above discussion, ~- - gE -- 0. Assume v E V,  (T -- g)v = pw, 

W E V. Then applying E, we get p e w  = E(T - g)v = (1 - gm)v = pry, where 

p ~  r. Then r v - E w  = sx, s 6 Z. Let t be a solution to the congruence 

rt --- 1 mod p. Then ~ = E t ~  + st2. Now E2 = m g m - i 2 ,  so since mg m - i  ~ 0 

rood p, we may choose a multiple y of x such that  E~ = 2. It  follows that  

= E t ~  + Est9  = E ( t ~  + sty) as desired. I 

Remark: The sequence 

is also exact, by a similar argument. 

Let a central embedding problem $: 

1--+ A - +  E- -% G - +  I 

be given, G = G ( L / K )  a finite p-group, A TM Z/pZ .  Consider the inflated 

embedding problem ~1: 

1 --4 A--+ Ei  --%~ G1 --4 1 

with Gi = G ( L 1 / K ) ,  L1 = L(#p) = L K i ,  where the following diagram is exact 

and commutative: 

1 )-A ~-E1 e l  Gi  ~ 1 

e 

1 ~ A  ~ E  ~ G  7 1  

We have Gi  -~ G x T, E i  ~ E x T, where T = (T) is again G ( K i / K ) .  

2.2 LEMMA: The inflated embedding problem Ci has a proper solution i f  and 

only i f  the original embedding problem E has a proper solution. In fact, there is a 

canonical one-one correspondence between proper solutions to the two embedding 

problems. 

Proo~ Suppose fx is a proper solution to $i. Then ~'fl = f is a proper solution 

to E. Conversely suppose f :  GK ~ E is a proper solution to $. Then since 

there is a unique monomorphism (section) ~: E ~ Ei  such that  #~ = idE, 

f i  := ~f • resKs/K~: GK -----+ Ei  is a proper solution to ~i uniquely determined 

by f .  ] 

We now wish to describe all solutions to s 
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2.3 PROPOSITION: Let s have solution field Ll(a 1/p) (L1 contains #p). Then 
every other solution field looks like Lx(~ l/p) with ~ = aa, a E K1, a r-g E 
K [ n  L*I p, where r = r as above. 

Proof." Let N1 = Ll(fl l/p) be a solution field, fl E L1. By [4, Prop. 2.5], ~ = aa, 
a E K1, since N1 is also a solution to the restricted embedding problem for 

L1/K1. The condition that G(N1/L1) be central in G(N1/K) is equivalent by 
*p *p 

Kummer theory to G(L1/K) acting trivially on the dual Hom((f~)L 1 /L  1 , #p), 

i.e. flr-g E L1 p. Since the same holds for a, we have a r-g = (~/a) ~-g E L*I p. 

Conversely, if a E K~, and a ~-g E L~ p, then since a r-g E L*I p, (aaff -g E L1 p, 
and Ll((aa) 1/p) is also a solution field. 1 

We now assume further that K = k(t) is a rational function field in one vari- 

able. Let P denote the set of all finite primes of K/k,  i.e. monic irreducible 

polynomials in kit], Pl the set of finite primes of K1/kl, where kl = k(#p) and 

K1 = K(#p). (The infinite prime corresponds to the negative degree valuation.) 

By [4, Theorem 1.1], the upper map in the commutative diagram of restriction 

maps 

H2(GK,, A) :> l-Ime~, H2(GKlpl , A) 

l l 
H2(GK, A) , live p H2(GKp, A) 

is injective. (Kp denotes the completion of K at p.) Since the left vertical arrow 

is injective (cot. res = m and mlP-  1), the lower right arrow is also injective. By 

[4, Prop. 2.2], the local-global principle holds for s i.e. there is a solution to s 

r there is a solution to the induced local embedding problem s corresponding 

to 

1 ~ A --+ Elp --+ G(Llp/Kp) ~ 1 

for every finite prime p of K/k.  

Define L / K  to be Scholz iff every prime of K which ramifies in L is of relative 

degree 1 in L / K  (totally ramified). 

2.4 PROPOSITION: Assume k is an algebraic extension of Q 

the cyclotomic Zp-extension of Q, K = k(t), and L / K  Scholz. 
embedding problem 

s 1 --+ Z/pZ --> E -% G --~ 1 

containing 

Then every 

has a proper solution. 
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Proof'. By the local-global principle, it suffices to show local solvability at every 

finite prime p. 

CASE 1. p UNRAMIFIED: Then Kp = k'((u)) (formal power series field), where 

k ~ is a finite extension of k, and Lp = LKp is an unramified extension g((u)) of 

k'((u)). The local embedding problem descends to a central embedding problem 

over k', and has a solution by [2, p. 211] (k' has cohomological p-dimension _< 1). 

CASE 2. p RAMIFIED: Then p has relative degree one in L, so Lp/Kp is a 

(cyclic) totally ramified extension. If the local embedding problem splits, then 

it has a (trivial) solution. If not, then by [5, 3-4-3], Kp contains the pth roots of 

unity, hence all p-power roots of unity (k contains the cyclotomic Zp -extension 

of Q). Therefore the local embedding problem has a solution. | 

2.5 PROPOSITION: Let k be arbitrary, K = k(t). Then every nonsplit central 

embedding problem with A ~- Z/pZ, which has a (proper) solution, has a (proper) 

solution with solution field N such that every finite prime unramified in L / K  is 

unramified in N /  K as well. 

Proo~ Let N be the given solution field. Then by Lemma 2.2 and Proposi- 

tion 2.3, the corresponding inflated embedding problem has solution field N1 :-- 
, ~  * p  * p  

N(lzp) = Ll(o~l/P), a E L1, with G1 = G • T acting on (a)L 1 /L  1 by a ~-1 E 

L~ p, a e G, and a ~-g C L*I p, T E T the fixed generator. 

Let kl = k(#p) as before, and let R be the integral closure of kl[t] in L1. R is 

a Dedekind domain with fraction field Lx. Let I = ILl be the group of fractional 

ideals of L1. The principal ideal (a) has its factorization 1-Iv ~ n v .  For a E G, 

(~)~ = I-I~(~3a) n~ -- 1--Iv V nv m~215 Ip, so n~ --- nv~ mod p for a e G, hence 

(~) - 92~mod• I p where 92 is a product of ramified prime ideals (in L1/K1) with 

conjugate primes occurring to the same power, and ~ is a product of prime ideals 

unramified in L1/K1 (hence also in L1/K since K1/K  is unramified), again with 

conjugate primes occurring to the same power, hence we may assume ~ to be a 

product of primes of K1, since ~ (as well as 92) is G-invariant mod p-th powers. 

ki[t] is a principal ideal domain, so ~B = (b), b E K[ .  (a) r -9  E I p 

92r-9~r-g E I p. The set of primes of Li ramified in L1/K1 is equal to the set of 

primes of L1 ramified in L i / K ,  so is T-invariant. It follows that 92--9, ~ - g  each 

lie in I n, since they are relatively prime. ~ = (b), b E Ki,  so (bff -9 C I v N Ig , .  

Since (b) consists of primes unramified in L1, (bff -a C I~: 1 , so we may assume 

b r-g E K~ p. Then replacing a by /3 = ab - i  yields another solution to the 

embedding problem s (Proposition 2.3), and the ideal (/3) is divisible only by 

primes ramified in L i / K .  | 
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2.6 THEOREM: Let  k = Q(p), the max imal  p-extension o f  Q, K = k(t) .  Let  

a l , . . . , a n  E kl ,  mutua l ly  nonconjugate over k, such that  each ai has p - 1 

distinct  T-conjugates.  Let  pi(t)  be the minimal  polynomial  o f  ai over k, i.e. 

pi(t)  = I]pET(t  - a~). Let  S = {pl(t),...,p,~(t),cxD}. Then the max ima l  p- 

extension o f  K unramified outside S is a regular extension of  k and its Galois 

group is a free pro-p group on n generators. 

Proo~ Regularity is immediate from the fact that Q(p) has no p-extensions. Set 

u~ = ( t -  ai) ~ = ( t -  aiff  p-2+~p-3g+'''+g~-2, i = 1 , . . . , n  

(here m = p -  1). Then M1 = Kl(u11/P, . . . ,u~/p)  is a C~ x Cp_l-extension 

of K,  unramified outside S. (M1 is abelian over K by Lemma 2.1 and the 

Kummer-theoretic argument in the proof of Proposition 2.3.) Let M be the 

unique C~-extension inside it. 

CLAIM: M is the max imal  e lementary  abelian p-extension o f  K unramified 

outside S. 

Indeed, consider U = K ~ / K ~  v, as an FvT-module. Then U = Uo @ ( ~ q  Uq), 

where U0 = k ~ / k l  p, and for each monic irreducible polynomial q = q(t) E kl[t], 

Uq is the submodule with Fp-basis the (cosets of the) distinct T-conjugates of q. 

By Kummer Theory, each submodule W of U corresponds to an elementary 

abelian p-extension of K1 which is Galois over K. Moreover, the primes that 

ramify in this extension are exactly those which are in the support of nonzero 

elements of W, i.e. those that appear with nonzero coefficient when a nonzero el- 

ement of W is written as a linear combination of the basis elements coming from 

the irreducible polynomials q mentioned above. We now take W = ~ U t - ~ ,  

which corresponds to the maximal elementary abelian p-extension M1 of K1 un- 

ramified outside (the primes above) S. Furthermore, W decomposes into a direct 

sum of eigenspaces ~ Wr, where 0 < r < p - l ,  and Wr = {w E W : 7(w) = rw} .  

Thus Wg corresponds to the maximal elementary abelian p-extension of K con- 

tained in M1, i.e. unramified outside S. (Wg corresponds via Kummer Theory 

to the composite of cyclic extensions of degree p of K1 which are abelian over K 

and contained in M1.) Apply Lemma 2.1 with V the subgroup of K~ generated 

by the t - ai and their conjugates; so V = W, and Wg = W E (multiplicative no- 

tation), which is spanned by the classes t - a~ ~, noting, by the remark preceding 

Lemma 2.1, that 

u--7 T = t - ai ~ = t - ai E~ = t ---:-~i Eg = ~ g ,  
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proving the claim. 

If G is the free pro-p group on n generators, G(M/K) ~ G/OG, where (I)G is 

the Frattini subgroup of G. M / K  is Scholz, because all the ramified primes have 

residue field Q(p). 

Let G D OG = G1 D G2 D . . .  be a chain of normal subgroups with quotients 

G~/G~+I ~ g/pZ, i > 1, and Ai Gi = {1}. We inductively prove that there is a 

tower of Scholz extensions Ni with G(Ni/K) TM G/Gi in which only tile primes 

P l ( t ) , . . - ,Pn ( t ) ,  oo ramify. It will then follow that N := Oi Ni is a p-extension 

of K with Galois group free pro-p on n generators, unramified outside S. It is 

therefore the maximal one, since otherwise M above would not be the maximal 

elementary abelian p-extension of K unramified outside S. Set N1 = M. Assume 

inductively that Ni /K  is Scholz and unramified outside S, i > 1. The embedding 

problem corresponding to 

1 -+ Z/pZ -+ G/Gi+I ~ C/Ci TM G(Ni/K) -+ 1 

is nonsplit (Gi C (I)G), so by Propositions 2.4 and 2.5, there is a (proper) solution 

field Ni+l unramified outside S. Since Ni /K  is Scholz, every prime ramified in 

Ni has relative degree one, so if a ramified prime p in Ni+l has degree greater 

than one, its degree is p, and the local extension at p contains a Cp-extension of 

Q(p)=residue field of p, contradiction. It follows that Ni+I/K is Scholz. | 

The remaining discussion parallels that in [4, Sections 3, 4]. Taking the limit 

over finite sets S as in the preceding theorem, we get 

2.7 THEOREM: The free pro-p gro71p on countably many generators is regular 

o v e r  Q(p). 

Furthermore, translating up from Q(p)(t) to Qnil (t), we get 

2.8 THEOREM: The free pro-p group on countably many generators is regular 
over Qnil. Every finite nilpotent group is regular over Qmt. 

We remark that Q,~il is not PAC [1, Cor. 10.15]. 
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